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ABSTRACT

Tomographic imaging modalities sample subjects with a dis-
crete, finite set of measurements, while the underlying object
function is continuous. Because of this, inversion of the imag-
ing model, even under ideal conditions, necessarily entails ap-
proximation. The error incurred by this approximation can be
important when there is rapid variation in the object function
or when the objects of interest are small. In this work, we
investigate this issue with the Fourier transform (FT), which
can be taken as the imaging model for magnetic resonance
imaging (MRI) or some forms of wave imaging. Compres-
sive sensing has been successful for inverting this data model
when only a sparse set of samples are available. We apply the
compressive sensing principle to a somewhat related problem
of frequency extrapolation, where the object function is repre-
sented by a super-resolution grid with many more pixels than
FT measurements. The image on the super-resolution grid is
obtained through nonconvex minimization. The method fully
utilizes the available FT samples, while controlling aliasing
and ringing. The algorithm is demonstrated with continu-
ous FT samples of the Shepp-Logan phantom with additional
small, high-contrast objects.

Index Terms— Frequency extrapolation, aliasing, Fourier
transform imaging, MRI, compressive sensing

1. INTRODUCTION

Tomographic imaging strives to reconstruct digital images of
continuous objects from a finite set of discrete measurements.
In MRI, for example, the free induction decay samples are in-
terpreted as spatial frequency samples of an underlying object
function, related to the proton spin density. An MRI pulse
sequence can be designed to obtain a Cartesian grid of spa-
tial frequencies. This grid can efficiently be processed into
a discrete image array by the fast Fourier transform (FFT),
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which performs an inverse discrete Fourier transform (FT) on
the data. Even neglecting physical factors and noise that spoil
the imaging model, strong imaging artifacts can appear due to
aliasing and ringing. These artifacts are particularly disturb-
ing when viewing low-contrast features in the neighborhood
of a large discontinuity or when imaging small objects. Tra-
ditional methods of dealing with such artifacts generally in-
volve filtering the frequency values so that the high frequency
components are brought gently to zero. Such methods are ef-
fective at removing ringing artifacts, but they also throw out
the information contained in the frequency components that
were attenuated. This loss of information can be particularly
disturbing for small objects. A preferable approach is to ex-
trapolate the available measurements to higher frequencies.

Although frequency extrapolation is a long-standing prob-
lem in sampling theory [1], we have been motivated to exam-
ine this issue again due to the recent interest in compressive
sensing (CS). CS methods seek to recover an image from a
sparse set of measurements. The issue of frequency extrapo-
lation becomes relevant to the CS community when such al-
gorithms are applied to actual scanner data. Most work in CS
begins with a discrete-to-discrete data model, which is further
removed from reality than the continuous-to-discrete model
for a scanner. (A notable exception is the Xampling frame-
work, which does connect back to a continuous signal model
[2]). Take the discrete 2D FT as the imaging model, for exam-
ple. If a Cartesian grid of frequency samples with dimension
N2 is measured, a discrete image is obtained through the in-
verse discrete FT. In this case, image recovery from sparse
samples is well defined; reconstruction of theN2 discrete im-
age from a number of samples less thanN2 can be interpreted
as sparse data reconstruction.

For continuous-to-discrete imaging models, it is no longer
clear what constitutes a sparsely-sampled or fully-sampled
imaging system. Arguments based on the Nyquist frequency
are generally not applicable for tomography, because ob-
ject functions are not band-limited, so in principle spatial
frequency information is needed over the whole 2D plane.
Thought of in another way, CS has been primarily concerned
with interpolation of spatial frequencies from a finite set of
measurements. But what is needed for CS inversion of the



continuous FT is a combination of frequency interpolation
and extrapolation. In this article, we address the latter. In-
terestingly, the CS principle may provide useful algorithms,
which can effectively address frequency extrapolation for cer-
tain classes of object functions. And since nonconvex CS has
been shown to give better results for underdetermined prob-
lems [3, 4, 5], we investigate whether nonconvex methods
will improve frequency extrapolation.

In Section 2 we specify the frequency extrapolation prob-
lem; in Section 3 we summarize the nonconvex CS algorithm;
and in Section 4 we show results of the algorithm applied
to FT data from the continuous Shepp-Logan phantom with
small test objects embedded.

2. DIFFICULTIES IN INVERTING THE
CONTINUOUS-TO-DISCRETE IMAGING MODEL

We demonstrate the frequency extrapolation problem with the
inversion of a 512 × 512 grid of FT samples computed from
the continuous FT of the Shepp-Logan phantom with addi-
tional test objects. Shown in Figure 1 is the phantom in a
low-contrast window over the whole object and in a high-
contrast window zooming in on the small test objects. The
result of the inverse discrete FT of the data is shown in Fig-
ure 2. Clear aliasing artifacts are visible, and the image of the
small objects is quite distorted. That the small objects are dis-
torted is no surprise as they occupy only a few pixels, and the
pixel representation is clearly not going to be accurate at this
length scale. On the other hand, small objects such as these
can be quite significant in many imaging applications or small
details on larger objects, such as spiculations extending from
a malignant tumor, can be important for clinical applications.

Fig. 1. Left: High-resolution, 4096 × 4096 discretization of
a continuous Shepp-Logan phantom, with very small test ob-
jects embedded towards the upper right. Right: a 256 × 256
zoom on the test objects, with an adjusted grayscale window
to show contrast.

A common strategy to image such small objects is to em-
ploy a higher resolution grid in the image space or, equiva-
lently, zero-pad the frequency samples. Figure 3 shows the

Fig. 2. Inverse DFT of the 512 × 512 samples of the Fourier
transform of the continuous phantom, with a zoom-in (now
32× 32) on the small objects. Aliasing is prevalent.

Fig. 3. Inverse DFT of the 4096×4096 array obtained by zero
padding the 512× 512 FT samples. Ringing is substantial.

result of frequency zero-padding by a factor of 8 in both di-
mensions. While the small object representation is smoother,
there are still conspicuous ringing artifacts. It is well known
that these artifacts are caused by the discontinuous jump to
zero at the boundary of the original frequency samples. A
common procedure is to roll off the high frequency samples
in order to eliminate or reduce the size of these discontinu-
ities. There are many ways to do this, and Figure 4 shows how
Gaussian filtering removes ringing artifacts from the zero-
padding result. Though effective, such filtering necessarily
throws out information and important shape detail is lost.

The issue at hand is really one of frequency extrapola-
tion. The inverse DFT assumes that the frequency samples
repeat, while zero-padding assumes the unknown frequencies
are zero. Both strategies are highly unrealistic for this phan-
tom, as seen in the expanded set of 4096 × 4096 FT samples
in Figure 7. More advanced approaches involve formulating
frequency extrapolation as an optimization problem. For ex-
ample, the Papoulis-Gerchberg algorithm [1] enforces com-
pact support of the image. The same reference also describes
an algorithm that is based on information theory and calls for
maximizing entropy. The information theory argument is in-
teresting in that it is a reaction to zero padding—a condition
that is strong and wrong. Maximum entropy methods aim



Fig. 4. Inverse DFT of the 4096 × 4096 array obtained by
Gaussian filtering the zero-padded FT samples. Aliasing is
removed but the small objects are heavily blurred.

to extrapolate to high frequency values that are maximally
non-committal [6]. Strong prior information, however, is only
detrimental if it is wrong.

The CS principle provides a strong prior based on some
form of sparsity in the image. We have investigated sparsity of
the image gradient in applications with real X-ray computed
tomography data [7, 8], and have found it effective at reduc-
ing the necessary number of views as measured quantitatively
by many image quality metrics [9]. This same CS princi-
ple should be effective when applied to the present frequency
extrapolation, as the phantom has a sparse gradient. Unlike
other CS applications involving Fourier sampling [3, 4], we
do not expect exact recovery even under these ideal condi-
tions for two reasons: (1) although we have spatial sparsity, it
still requires an infinite number of infinitesimally small pix-
els to represent the edges, and (2) the frequency extrapolation
problem is more unstable than interpolation. The goal instead
is to be able to exploit all the available frequency informa-
tion to see details down to the minimum length scale of the
imaging device. The image quality test here is visual. The
small test objects are simple geometric shapes, and the goal is
to be able to visually resolve these shapes. Future work will
formulate this task as a quantitative image quality metric.

We do not claim that the CS principle provides a fre-
quency extrapolation algorithm that is superior to other al-
gorithms for all objects. Instead, it may be useful for certain
classes of objects. Furthermore, this investigation may pro-
vide insight into more traditional CS (if CS can be considered
traditional) configurations, where both frequency interpola-
tion and extrapolation are necessary.

3. NONCONVEX CS FOR FREQUENCY
EXTRAPOLATION

We attempt to reconstruct a 4096×4096 image from the 512×
512 grid of frequency samples of our continuous test object.
The essence of our approach is to find the image having the
sparsest gradient that is consistent with the data. This would

correspond to the following optimization problem:

x∗ = argmin
x
‖∇x‖0, subject to Ax = b. (1)

Here,∇ is a discretization of the gradient operator (for which
we use simple forward differences, and periodic boundary
conditions); ‖ · ‖0 counts the number of nonzero components;
and A is the rectangular DFT operator that transforms an im-
age on the super-resolution, 4096× 4096 grid to the FT sam-
ples b on the original, 512×512 frequency grid. Note that the
linear system Ax = b is severely underdetermined, as each x
has 64 times as many elements as b.

The usual CS approach [10] is to replace the intractable
problem (1) with a more readily solved optimization problem,
using a sparsity-inducing objective function. This is most
commonly the `1 norm; however, it has been shown [3, 4, 5]
that better results can be obtained using a nonconvex objec-
tive function instead. We use an approach similar to that of
[11], which uses a penalty function ϕp that is a shifted and
scaled pth power function, spliced smoothly with a quadratic
function near the origin (see Figure 5). Using p < 1 allows
the image gradient to be less sparse for the same amount of
data, and can preserve shapes better [12].

Fig. 5. Penalty function applied to each pixel of the image
gradient, for three values of p. Using p < 1 results in sublin-
ear growth, while using p < 0 results in ϕp(t) being bounded
above. This gives a better approximation to the counting
norm, which is 0 at t = 0 and 1 elsewhere.

Because there is not a perfect match between the DFT
of the discrete image and the FT samples of the continuous
phantom, we relax the data equality constraint in (1). We use
a data fidelity term instead, which penalizes but does not pro-
hibit discrepancy from the data. This gives us the following,
unconstrained optimization problem:

x∗ = argmin
x

N∑
i=1

ϕp

(
|∇x|i

)
+ λ‖Ax− b‖22, (2)

where N = 40962 is the number of pixels, and λ is a parame-
ter determining the balance between the competing effects of
regularization and data fidelity. For this work λ is chosen by
visual inspection. Future work will explore dependence on λ
of quantitative image-quality metrics.



To solve (2), we use a modification of the algorithm of
[11], which uses a Douglas-Rachford splitting, augmented
Lagrangian approach (cf. [13, 14, 15] for the convex case).
This decomposes the optimization task into two simpler sub-
problems, one requiring a simple generalization of shrinkage
(or soft thresholding), the other requiring little more than two
FFTs. This makes the algorithm very efficient, which makes it
feasible for a reconstruction problem of this size. The modifi-
cation simply removes one of the two augmented Lagrangian
steps, which was designed to enforce the data constraint ex-
actly. Further details are in [11].

4. RESULTS

We demonstrate (2) on the frequency extrapolation problem,
for values of p = 1, 1/4, and −1/2. The reconstructions for
these cases are shown in Figure 6. We note that the visually
optimal choice of λ in (2) can depend on the structures being
imaged. We choose the largest value (or weakest regulariza-
tion) that removes nearly all of the aliasing near the small
objects. For the phantom as a whole, a tighter data constraint
would be appropriate.

When p = 1, the small objects are blurred, though less
than in the case of filtered, zero-padded data. The blurring is
greatly decreased in the p = 1/4 case, while with p = −1/2
the edges are sharp. These two cases have blockiness in the
arms of the crescent, which in the p = 1 case is a smooth
decrease in intensity. The rectangle is more rounded off in
the p = −1/2 case, which also struggled to remove all the
aliasing without over-regularizing the phantom. The p = 1/4
case seems best overall, though for applications where sharp
edges are very important, the p = −1/2 case would be best.

In order to see how the algorithm performs on its designed
function of frequency extrapolation, we compute the extrap-
olated values for each p by computing the DFT of the recon-
struction, and compare with the true values from the analyti-
cally computed FT of the continuous phantom. The results in
Figure 7 shows that the smaller the value of p, the better the
extrapolation, though in all cases the result is substantially
more accurate than zero padding.

5. SUMMARY AND CONCLUSION

We have applied the recent principle of compressive sens-
ing to the mature signal processing problem of frequency ex-
trapolation. The corresponding nonconvex CS algorithm ap-
pears to be effective for revealing small details in the subject
for a class of objects that are approximately piecewise con-
stant.The gain in image quality over basic filtering methods
comes from the utilization of all measured frequency compo-
nents. The present frequency extrapolation method can be ap-
plied directly to current FT imaging modalities such as MRI,
and it may allow for better image quality with currently used
image acquisition schemes.

Fig. 6. Our 4096× 4096 reconstructions from 512× 512 FT
samples of the continuous phantom, using (2) with (from top
to bottom) p = 1, 1/4, and −1/2. The smaller the p, the
sharper the edges, though p = −1/2 rounds off the rectangle
more than p = 1/4, and also over-regularizes the phantom.

Looking down the road, the frequency extrapolation prob-
lem will become a necessary part of CS as the focus of CS
research shifts to applications. Of course there may be many
alternate strategies: [16] promotes a method where the sup-
port of the non-zero components of the signal is reconstructed
first and the signal expansion is performed only within this
support; and [17] describes an algorithm for low-dose X-ray
computed tomography, first performing a frequency extrap-
olation of the CT projection data followed by interpolation
of the view angles through a CS approach. Our initial ex-
perience in attempting to improve resolution properties is that
there will need to be many alternative approaches, because the
details of the frequency extrapolation will depend strongly on
the imaging model of a particular tomographic system.



Fig. 7. Left to right: actual 4096 × 4096 FT samples of the continuous phantom, scaled by |ν|3/2 to make high-frequency
components visible, with a box showing the portion containing the original 512 × 512 data; and the DFT of the 4096 × 4096
reconstructions from the 512× 512 FT samples using (2) using p = 1, 1/4, and −1/2, all scaled the same way and on the same
(false) color scale. The smaller the value of p, the better the frequency extrapolation effect.
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